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With granular computing point of view, the classical dominance-based rough set model is
based on a single granulation. For an ordered information system, this paper proposes two
new types of multiple granulation rough set (MGRS) models, where a target concept is
approximated from different kinds of views by using dominant classes induced by
multiple granulations. And a number of important properties of the two types of MGRS
are investigated in an ordered information system. From the properties, it can be found
that Greco’s rough set model is a special instance compared to our MGRS model.
Moreover, the relationships and differences are discussed carefully among Greco’s rough
set and two new types of MGRS. Furthermore, several important measures are presented
in two types of MGRS models, such as rough measure, quality of approximation in an
ordered information system. In order to illustrate our MGRS models in an ordered
information system, a real life example is considered, which is helpful for applying this
theory in practical issues. One can see get that the research is meaningful in applications
for the issue of knowledge reduction in complex ordered information systems.

Keywords: rough set; dominance relation; information systems; multiple granulation

1. Introduction

Rough set theory proposed by Pawlak (1982, 1991) is an extension of the classical set

theory and can be regarded as a soft computing tool to handle imprecision, vagueness,

and uncertainty in data analysis. The theory has been found successful in applications in

the fields of pattern recognition (Swiniarski and Skowron 2003), medical diagnosis

(Tsumoto 1998), data mining (Chan 1998; Kim 2001; Ananthanarayana, Narasimha, and

Subramanian 2003), conflict analysis (Pawlak 2005), algebra (Davvaz and Mahdavipour

2006; Xiao and Zhang 2006; Cheng, Mo, and Wang 2007) and so on. Recently, the theory

has generated a great deal of interest among more and more researchers.

However, in practice, due to the existence of uncertainty and complexity of particular

problems, the problem would not be settled perfectly by means of classical rough sets.

Therefore, it is vital to generalize the classical rough set model. To overcome this

limitation, classical rough sets have been extended to several interesting and meaningful

general models in recent years by proposing other binary relations, such as tolerance

relations (Skowron and Stepaniuk 1996), neighbourhood operators (Yao 1998), and others
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(Wu, Leung, and Zhang 2002; Pawlak 2005; Wu, Zhang, Li, and Mi 2005; Leuang, Wu,

and Zhang 2006; Pawlak and Skowron 2007a, 2007b; Xu and Zhang 2007; Yu, Hu, and

Wu 2007; Xu, Zhang, and Zhang 2009; Xu, Zhong, Zhang, and Zhang 2010).However, the

original rough set theory which does not consider attributes with preference ordered

domain, that is criteria. Particularly, in many real situations, we often face the problems in

which the ordering of properties of the considered attributes plays a crucial role. One such

type of problem is the ordering of objects. For this reason, Greco, Matarazzo, and

Slowinski (1998, 1999, 2001, 2002, 2007) proposed an extension rough set theory called

the dominance-based rough set approach (DRSA) to take into account the ordering

properties of criteria. This innovation is mainly based on substitution of the

indiscernibility relation by a dominance relation. In DRSA, condition attributes are

criteria and classes are preference ordered, the knowledge approximated is a collection of

upward and downward unions of classes and the dominance classes are sets of objects

defined by using a dominance relation. In recent years, several studies have been made on

properties and algorithmic implementations of DRSA (Susmaga, Slowinski, Greco, and

Matarazzo 2000; Dembczynski, Pindur, and Susmaga 2003a, 2003b; Xu and Zhang 2007;

Xu et al. 2009, 2010). Nevertheless, only a limited number of methods using DRSA to

acquire knowledge from inconsistent ordered information systems have been proposed.

Pioneering work on inconsistent ordered information systems with the DRSA has been

proposed by Greco et al. (1998, 1999, 2001, 2002, 2007), but they did not clearly point out

the semantic explanation of unknown values. Shao and Zhang (2005) further proposed an

extension of the dominance relation in an inconsistent ordered information system.

On the other hand, information granules have played a significant role in human

cognitive processes. Information granules refer to pieces, classes, and groups divided in

accordance with characteristics and performances of complex information in the process

of human understanding, reasoning, and decision making. Such information processing is

called information granulation. Zadeh (1979) firstly proposed and discussed the issue of

fuzzy information granulation in 1979. Then, the basic idea of information granulation has

been applied to many fields, such as theory of rough sets (Pawlak 1982, 1991; Pawlak and

Skowron 2007a), fuzzy sets (Zadeh 1985, 1997), evidence theories (Shafer 1976), etc., and

a growing number of scholars are concerned about the discipline. In 1985, Hobbs proposed

the concept of granularity. And Zadeh (1997) firstly presented the concept of granular

computing during the period 1996–1997. At this time, granular computing has played a

more and more important role in soft computing, knowledge discovery, data mining, and

some studies have achieved a large amount of excellent results (Lin 1997, 2005; Klir 1998;

Yao 2000, 2001, 2004, 2006; Zhang et al. 2001; Liang and Qian 2006; Liang, Shi, and Li

2006; Qian, Liang, Yao, and Dang 2010).

With granular computing point of view, an equivalence relation on the universe can be

regarded as a granulation, and a partition on the universe can be regarded as a granulation

space (Yao 2000). Hence, the classical rough set theory is based on a single granulation (only

one equivalence relation). Note that any attribute set can induce a certain equivalence

relation in an information system. However, when the rough set is based on many

granulations induced from several equivalence relations, we can have some cases as follows:

Case 1. There exists a granulation at least such that the elements surely belong to the

concept.

Case 2. There are some granulations such that the elements surely belong to the

concept.

Case 3. All of the granulations such that the elements surely belong to the concept.

W. Xu et al.476
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Case 4. There exists a granulation at least such that the elements possibly belong to the

concept.

Case 5. There are some granulations such that the elements possibly belong to the

concept.

Case 6. All of the granulations such that the elements possibly belong to the concept.

For these above cases, many researchers have extended the rough set to the multi-

granulation rough sets (Rasiowa 1988, 1990, 1991; Rasiowa and Marek 1993; Rauszer 1994;

Leuang et al. 2006; Khan and Ma 2011). To more widely apply the rough set theory in

practical applications, Qian et al. (2010) extended Pawlak’s single-granulation rough set

model to a multiple granulation rough set (MGRS) model, where set approximations are

defined by multiple equivalence relations on the universe. Based on this, many researchers

have extended the multi-granulation rough set to the generalized multi-granulation rough sets

(Xu, Wang, and Zhang 2011; Xu, Zhang, and Wang 2012). Similarly, in essence, the

approximations in Greco’s DRSA, Shao’s and some approaches are still based on a singleton

granulation induced from a dominant relation in an ordered information system, which can be

applied to knowledge representation in distributive systems and groups of intelligent agents.

The main objective of this paper is to extend Greco’s single-granulation rough set

model based on dominant relation in ordered information systems to two new types of

MGRS models where the set approximations are defined by using multiple equivalence

relations on the universe. The rest of the paper is organized as follows. Some preliminary

concepts in Pawlak’s and Greco’s rough set theory are briefly reviewed in Section 2. In

Sections 3 and 4, for an ordered information system, based on multiple dominant relations,

two new types of MGRS models are obtained, respectively, where a target concept is

approximated from different kinds of views by using the dominant classes induced by

multiple dominant relations. And a number of important properties of the two types of

MGRS models are investigated in an ordered information system. It is shown that some of

the properties of Greco’s rough set theory based on dominant relations are special instances

of those of our MGRS in an ordered information system. In Section 5, the relationships and

differences are discussed among Greco’s rough set and two new types of MGRS models in

an ordered information system. In Section 6, several important measures are presented in

two types of MGRS models, such as rough measure and quality of approximation. Finally,

the paper is concluded by a summary and outlook for further research in Section 7.

2. Rough set theory and ordered information systems

The following recalls necessary concepts and preliminaries required in the sequel of our

work. Detailed description of the theory can be found in the source papers (Pawlak 1982,

1991; Greco et al. 1998, 1999, 2001, 2002, 2007; Pawlak and Skowron 2007a). A detailed

description has also been made by Zhang et al. (2001).

A notion of information system (sometimes called data tables, attribute valued

systems, knowledge representation systems, etc.) provides a convenient basis for the

representation of objects in terms of their attributes.

An information system is a quadruple I ¼ ðU;AT;V; f Þ, where U is a non-empty finite

set with n objects, {u1; u2; . . . ; un}, called the universe of discourse; AT ¼

{a1; a2; . . . ; am} is a non-empty finite set with m attributes; V ¼ <a[ATVa and Va is the

domain of attribute a; f : U £ AT ! V is a function such that f ðu; aÞ [ Va for any

a [ AT, u [ U, called an information function (Pawlak 1982, 1991; Lin 2005). A decision

table is a special case of an information system in which, among the attributes, we

distinguish a decision attribute. The other attributes are called condition attributes.

International Journal of General Systems 477
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Therefore, I ¼ ðU;C < {d};V; f Þ is a decision table, where sets C and {d} are condition

attribute set and decision attribute set, respectively.

In an information system, if the domain of an attribute is ordered according to a

decreasing or increasing preference, then the attribute is a criterion.

An information system is called an ordered information system if all condition

attributes are criterion (see Greco et al. 1998, 1999, 2001, 2002, 2007).

Assumed that the domain of a criterion a [ AT is completely pre-ordered by an

outranking relationfa, then u fa v means that u is at least as good as (outranks) v with respect

to the criterion a, and we can say that u dominates v or v is dominated by u. Being of type gain,

that is u fa v , f ðu; aÞ $ f ðv; aÞ (according to increasing preference) or u fa v ,

f ðu; aÞ # f ðv; aÞ (according to decreasing preference). Without any loss of generality and for

simplicity, in the following, we only consider condition attributes with increasing preference.

For a subset of attributes A # AT, we define u fA v , u fa v for ;a [ A. It is that u

dominates v with respect to all attributes in A. In general, we denote an ordered

information system by If ¼ ðU;AT;V ; f Þ.

For a given ordered information system, we say that u dominates v with respect to

A # AT if u fA v, and denote by uRf
A v. That is,

Rf
A ¼ {ðu; vÞ [ U £ Uju fA v} ¼ {ðu; vÞ [ U £ Uj f ðu; aÞ $ f ðv; aÞ;a [ A};

where Rf
A is called a dominance relation of ordered information system If.

Let us denote

½ui�
f
A ¼ {uj [ Ujðuj; uiÞ [ Rf

A }

¼ {uj [ Uj f ðuj; aÞ $ f ðui; aÞ;a [ A};

U

Rf
A

¼ ½u1�
f
A ; ½u2�

f
A ; . . . ; ½un�

f
A

� �
;

where i [ {1; 2; . . . ; n}, then ½ui�
f
A is called a dominance class or the granularity of

information, and U=Rf
A is called a classification of U about attribute set A.

From above description, the following properties of dominance relation in ordered

information system are trivial.

Proposition 2.1. Let If ¼ ðU;AT;V ; f Þ be an ordered information system and B;A #
AT (see Greco et al. 1998, 1999, 2001, 2002, 2007), then we have that

(1) Rf
A is reflective, transitive, but not symmetric, so it is not an equivalence relation.

(2) If B # A # AT, then Rf
AT # Rf

A # Rf
B .

Similarly, for the dominance class induced by the dominance relation Rf
A , the

following properties are still correct.

Proposition 2.2. Let If ¼ ðU;AT;V ; f Þ be an ordered information system and B;A #
AT (see Greco et al. 1998, 1999, 2001, 2002, 2007), then we have that

(1) if B # A # AT, then ½u�fAT # ½u�fA # ½u�fB for any u [ U;

(2) if v [ ½u�fA , then ½v�fA # ½u�fA and ½u�fA ¼ <{½v�fA jv [ ½u�fA };

(3) ½u�fAT ¼ ½v�fAT if and only if f ðu; aÞ ¼ f ðv; aÞ for any a [ AT; and

(4) j½u�fATj $ 1 for any u [ U;

where jXj denotes the cardinality of set X.

W. Xu et al.478
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For any subset X # U and A # AT in If, the lower and upper approximation of X

with respect to a dominance relation Rf
A could be defined as

Rf
A ðXÞ ¼ {u [ Uj½u�fA # X};Rf

A ðXÞ ¼ {u [ Uj½u�fA > X – Y}:

Proposition 2.3. Let If ¼ ðU;AT;V ; f Þ be an ordered information system and B;A #
AT (see Greco et al. 1998, 1999, 2001, 2002, 2007), then we have that

ðL1Þ Rf
A ðXÞ # X ðContractionÞ;

ðU1Þ Rf
A ðXÞ $ X ðExtensionÞ;

ðL2Þ Rf
A ð, XÞ ¼, Rf

A ðXÞ ðDualityÞ;

ðU2Þ Rf
A ð, XÞ ¼, Rf

A ðXÞ ðDualityÞ;

ðL3Þ Rf
A ðYÞ ¼ Y ðNormalityÞ;

ðU3Þ Rf
A ðYÞ ¼ Y ðNormalityÞ;

ðL4Þ Rf
A ðUÞ ¼ U ðCo-normalityÞ;

ðU4Þ Rf
A ðUÞ ¼ U ðCo-normalityÞ;

ðL5Þ Rf
A ðX > YÞ ¼ Rf

A ðXÞ> Rf
A ðYÞ ðMultiplicationÞ;

ðU5Þ Rf
A ðX < YÞ ¼ Rf

A ðXÞ< Rf
A ðYÞ ðAdditionÞ;

ðL6Þ Rf
A ðX < YÞ $ Rf

A ðXÞ< RðYÞ ðF-multiplicationÞ;

ðU6Þ Rf
A ðX > YÞ # Rf

A ðXÞ> RðYÞ ðF-additionÞ;

ðL7Þ Rf
A Rf

A ðXÞ
� �

¼ Rf
A ðXÞ ðIdempotencyÞ;

ðU7Þ Rf
A Rf

A ðXÞ
� �

¼ Rf
A ðXÞ ðIdempotencyÞ:

To measure the imprecision and roughness of a rough set, Pawlak recommended

X – Y the ratio

rAðXÞ ¼ 1 2
Rf

A ðXÞ
��� ���
Rf

A ðXÞ
��� ��� ;

which is called the rough measure of X by equivalence relation Rf
A .

Furthermore, for an information system with the decision I ¼ ðU;C < {d};V; f Þ and

A # C, a frequently applied measure for the situation is the quality of approximation of Rf
d

by Rf
A , also called the degree of dependency. It is defined as

gðA; dÞ ¼
1

jUj

Xk

j¼1

Rf
A ðDjÞ;

where Rf
d ¼ {ðu; vÞ [ U £ Ujgðu; dÞ ¼ gðv; dÞ} and U=d ¼ {½u�d;;u [ U} ¼

{D1;D2; . . . ;Dk}.

International Journal of General Systems 479
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3. The optimistic MGRS in ordered information systems (OIS)

In the section, we will consider the optimistic multiple granulation approximations of a

target set by using multiple dominant relations in an ordered information system.

Definition 3.1. Let If ¼ ðU;AT;V ; f Þ be an ordered information system,

A1;A2; . . . ;As # AT be attribute subsets (s # 2jATj), and Rf
A1
;Rf

A2
; . . . ;Rf

As
be dominant

relations, respectively. The operators OMfPs

i¼1
Ai

and OMfPs

i¼1
Ai

: PðUÞ! PðUÞ are defined

as follows: for ;X [ PðUÞ,

OMfPs

i¼1
Ai
ðXÞ ¼ uj

_m
i¼1

½u�fAi
# X

� �( )
; OMfPs

i¼1
Ai
ðXÞ ¼ u

m̂

i¼1

½u�fAi
> X – Y

� ������
( )

;

where ‘_’ means ‘or’ and ‘^’ means ‘and’. We call them the optimistic multiple

granulation lower and upper approximation operators, and call OMfPs

i¼1
Ai
ðXÞ and

OMfPs

i¼1
Ai
ðXÞ the optimistic multiple granulation lower approximation set and upper

approximation set of X in the ordered information system, respectively.

Moreover, if

OMfPs

i¼1
Ai
ðXÞ – OMfPs

i¼1
Ai
ðXÞ;

we say that X is the optimistic rough set with respect to multiple granulation spaces

A1;A2; . . .As in the ordered information system. Otherwise, we say that X is the optimistic

definable set with respect to these multiple granulation spaces in the ordered information

system.

Similarly, the area of uncertainty or boundary region of this rough set in an ordered

information system is defined as

BnOPs

i¼1
Ai
ðXÞ ¼ OMfPs

i¼1
Ai
ðXÞ2 OMfPs

i¼1
Ai
ðXÞ:

Here, we employ an example to illustrate the above concepts with respect to the

optimistic multiple granulation rough set (OMGRS) in an ordered information system.

Example 3.1. Suppose Table 1 is an ordered information system about the achievements of

some students, U ¼ {x1; x2; . . . ; x10} is a universe which consists of 10 students in some

college; Mathematic, English, Morality, Physical are the conditional attributes of the

system, and the dominant preference are as follows: A $ B $ C $ D. Decision is the

result of excellent students by the experts according to the achievements of these students,

Y expresses that the student is excellent, and N expresses the student is not excellent.

However, we often face the phenomenon that some universities may give some

conditions of excellent students as follows:

Condition 1: Not only the marks are higher, but also the morality is better.

Condition 2: Not only the marks are higher, but also the health is better.

W. Xu et al.480
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We can obtain that the decision has two decision classes DðYÞ;DðNÞ from Table 1, and

it is easy to find out that X ¼ {x1; x2; x3; x5; x6; x8; x10} is a set which consists of excellent

students.

If we only consider one of these conditions, who is an excellent student and who may

be an excellent student.

According to Conditions 1 and 2, we can obtain two dominant relations denoted as

R1andR2.

R1 ¼

1000001000

1100001000

0011111010

0001100010

0000100000

0000011000

0000001000

0001111110

0000100010

0001101011

0
BBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCA

; R2 ¼

1000001000

0100010000

0011010010

0001000000

0000100010

0000010000

0000001000

0001010100

0000100010

0001000001

0
BBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCA

:

If we consider only Condition 1, we can obtain

Rf
1 ðXÞ ¼ {x5};

Rf
1 ðXÞ ¼ {x1; x2; x3; x4; x5; x6; x8; x9; x10}:

It is easy to find out that x5 must be an excellent student, and

x1; x2; x3; x4; x5; x6; x8; x9; x10 may be excellent students, if we consider only Condition 1.

If we consider only Condition 2, we can obtain

Rf
2 ðXÞ ¼ {x2; x6};

Rf
2 ðXÞ ¼ {x1; x2; x3; x5; x6; x8; x9; x10}:

Table 1. An ordered information system about the achievements of some students.

Course Mathematics English Morality Physical Decision

x1 85 90 B A Y
x2 86 90 B B Y
x3 90 87 A C Y
x4 88 86 C D N
x5 87 85 D B Y
x6 86 87 A C Y
x7 84 83 B A N
x8 88 88 A C Y
x9 87 85 C B N
x10 89 88 B D Y

International Journal of General Systems 481
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It is easy to find out that x2; x6 must be excellent students, and

x1; x2; x3; x5; x6; x8; x9; x10 may be excellent students, if we consider only Condition 2.

According to these conditions, we can also raise some questions now.

Question 1: If we consider one of these conditions at least, who is an excellent student?

Question 2: When we consider both of these conditions, which one may be an excellent

student?

We cannot solve these questions according to the definition of Greco’s rough set, but

we can use the definition of OMGRS to solve the above questions. So we have

OMf
1þ2ðXÞ ¼ {x2; x5; x6};

OMf
1þ2ðXÞ ¼ {x1; x2; x3; x5; x6; x8; x9; x10}:

We can find out that the students x2; x5; x6 must be excellent, when we consider at least

one of these conditions, and the students x1; x2; x3; x5; x6; x8; x9; x10 may be excellent, if we

consider both of these conditions.

Furthermore, one can check the following properties:

Rf
1 ðXÞ< Rf

2 ðXÞ ¼ OMf
1þ2ðXÞ;

Rf
1 ðXÞ> Rf

2 ðXÞ ¼ OMf
1þ2ðXÞ:

To describe conveniently in our context, we express the optimistic MGRS by OMGRS

in ordered information systems. Moreover, one can obtain the following properties of the

OMGRS approximations in ordered information systems.

Proposition 3.1. Let If ¼ ðU;AT;V ; f Þ be an ordered information system, Ai # AT,

i ¼ 1; 2; . . . ; s, and X # U. Then the following properties hold:

ðOL1Þ OMfPs

i¼1
Ai
ðXÞ # X ðContractionÞ;

ðOU1Þ OMfPs

i¼1
Ai
ðXÞ $ X ðExtensionÞ;

ðOL2Þ OMfPs

i¼1
Ai
ð, XÞ ¼, OMfPs

i¼1
Ai
ðXÞ ðDualityÞ;

ðOU2Þ OMfPs

i¼1
Ai
ð, XÞ ¼, OMfPs

i¼1
Ai
ðXÞ ðDualityÞ;

ðOL3Þ OMfPs

i¼1
Ai
ðYÞ ¼ Y ðNormalityÞ;

ðOU3Þ OMfPs

i¼1
Ai
ðYÞ ¼ Y ðNormalityÞ;

ðOL4Þ OMfPs

i¼1
Ai
ðUÞ ¼ U ðCo-normalityÞ;

ðOU4Þ OMfPs

i¼1
Ai
ðUÞ ¼ U ðCo-normalityÞ:

Proof. Since the number of the granulations is finite, we prove that the results are true only

when the ordered information system has two dominance relations (A;B # AT) for

convenience. It is obvious that all terms hold when A ¼ B. When A – B, the proposition

can be proved as follows.
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(OL1) For any u [ OMf
AþBðXÞ, it can be known that ½u�fA # X or ½u�fB # X by

Definition 3.1. However, u [ ½u�fA and u [ ½u�fB . So we can have that u [ X. Hence,

OMf
AþBðXÞ # X.

(OU1) For any u [ X, we have u [ ½u�fA and u [ ½u�fB . So ½u�fA > X – Y and

½u�fB > X – Y, that is to say u [ OMf
AþBðXÞ. Hence, X # OMf

AþBðXÞ.

(OL2) For any u [ OMf
AþBð, XÞ, then

u [ OMf
AþBð, XÞ , ½u�fA #, X or ½u�fB #, X

, ½u�fA > X ¼ Y or ½u�fB > X ¼ Y

, u � OMf
AþBðXÞ

, u [, OMf
AþBðXÞ:

Hence, OMf
AþBð, XÞ ¼, OMf

AþBðXÞ.

(OU2) By (OL2), we have OMf
AþBðXÞ ¼, OMf

AþBð, XÞ. So it can be obtain that

, OMf
AþBðXÞ ¼ OMf

AþBð, XÞ.

(OL3) From (OL1), we have OMf
AþBðYÞ # Y. Also, it is well known that

Y # OMf
AþBðYÞ. So, OMf

AþBðYÞ ¼ Y.

(OU3) If OMf
AþBðYÞ – Y, then there must exist a u [ OMf

AþBðYÞ. So we can find that

½u�fA > Y – Y and ½u�fB > Y – Y. Obviously, this is a contradiction. Thus, OMf
AþBðYÞ ¼ Y.

ðOL4Þ OMf
AþBðUÞ ¼ OMf

AþBð, YÞ ¼, OMf
AþBðYÞ ¼, Y ¼ U

ðOU4Þ OMf
AþBðUÞ ¼ OMf

AþBð, YÞ ¼, OMf
AþBðYÞ ¼, Y ¼ U:

A

Proposition 3.2. Let If ¼ ðU;AT;V ; f Þ be an ordered information system, Ai # AT,

i ¼ 1; 2; . . . ; s and X; Y # U. Then the following properties hold:

ðOL5Þ OMfPs

i¼1
Ai
ðX > YÞ # OMfPs

i¼1
Ai
ðXÞ> OMfPs

i¼1
Ai
ðYÞ ðL-multiplicationÞ;

ðOU5Þ OMfPs

i¼1
Ai
ðX < YÞ $ OMfPs

i¼1
Ai
ðXÞ< OMfPs

i¼1
Ai
ðYÞ ðL-additionÞ;

ðOL6Þ X # Y ) OMfPs

i¼1
Ai
ðXÞ # OMfPs

i¼1
Ai
ðYÞ ðGranularityÞ;

ðOU6Þ X # Y ) OMfPs

i¼1
Ai
ðXÞ # OMfPs

i¼1
Ai
ðYÞ ðGranularityÞ;

ðOL7Þ OMfPs

i¼1
Ai
ðX < YÞ $ OMfPs

i¼1
Ai
ðXÞ< OMfPs

i¼1
Ai
ðYÞ ðU-additionÞ;

ðOU7Þ OMfPs

i¼1
Ai
ðX > YÞ # OMfPs

i¼1
Ai
ðXÞ> OMfPs

i¼1
Ai
ðYÞ ðU-multiplicationÞ:

Proof. Since the number of the granulations is finite, we only prove the results are true

when the ordered information system has two dominance relations (A;B # AT) for

convenience. It is obvious that all terms hold when A ¼ B or X ¼ Y. When A – B and

X – Y , the proposition can be proved as follows:

(OL5) For any u [ OMf
AþBðX > YÞ, we have that ½u�fA # ðX > YÞ or ½u�fB # ðX > YÞ

by Definition 3.1. Then, it can be obtained that ½u�fA # X and ½u�fA # Y hold at the same

time or ½u�fB # X and ½u�fB # Y hold at the same time. So, not only ½u�fA # X or ½u�fB # X
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hold, but ½u�fA # Y or ½u�fB # Y hold at the same time. That is to say that u [ OMf
AþBðXÞ

and u [ OMf
AþBðYÞ, i.e. u [ OMf

AþBðXÞ> OMf
AþBðYÞ.

Hence, OMf
AþBðX > YÞ # OMf

AþBðXÞ> OMf
AþBðYÞ.

(OU5) For any u [ OMf
AþBðXÞ< OMf

AþBðYÞ, we have that u [ OMf
AþBðXÞ or

u [ OMf
AþBðYÞ. Then ½u�fA > X – Y and ½u�fB > X – Y hold at the same time or ½u�fA >

Y – Y and ½u�fB > Y – Y hold at the same time. So, not only ½u�fA > ðX < YÞ – Y hold, but

also ½u�fB > ðX < YÞ – Y hold. That is to say u [ OMf
AþBðX < YÞ.

Hence, OMf
AþBðX > YÞ $ OMf

AþBðXÞ< OMf
AþBðYÞ.

(OL6) Since X # Y , one can have X > Y ¼ X. Then, OMf
AþBðX > YÞ ¼ OMf

AþBðXÞ.

Also, it can be found that OMf
AþBðX > YÞ # OMf

AþBðXÞ> OMf
AþBðYÞ by (OL5). So, we

can obtain that OMf
AþBðXÞ # OMf

AþBðXÞ> OMf
AþBðYÞ, that is to say that

OMf
AþBðXÞ ¼ OMf

AþBðXÞ> OMf
AþBðYÞ.

Thus, OMf
AþBðXÞ # OMf

AþBðYÞ.

(OU6) Since X # Y , one can have X < Y ¼ Y . Then, OMf
AþBðX < YÞ ¼ OMf

AþBðYÞ.

Also, it can be found that OMf
AþBðX < YÞ $ OMf

AþBðXÞ< OMf
AþBðYÞ by (OU5). So, we

can obtain that OMf
AþBðYÞ $ OMf

AþBðXÞ< OMf
AþBðYÞ that is to say that

OMf
AþBðYÞ ¼ OMf

AþBðXÞ< OMf
AþBðYÞ.

Thus, OMf
AþBðXÞ # OMf

AþBðYÞ.

(OL7) Since X # X < Y and Y # X < Y , by (OL6) it can be obtained that

OMf
AþBðXÞ # OMf

AþBðX < YÞ; OMf
AþBðYÞ # OMf

AþBðX < YÞ:

So, we have OMf
AþBðXÞ< OMf

AþBðYÞ # OMf
AþBðX < YÞ.

(OU7) Since X > Y # X and X > Y # Y , by (OU6) it can be obtained that

OMf
AþBðX > YÞ # OMf

AþBðXÞ; OMf
AþBðY > YÞ # OMf

AþBðYÞ:

So, we have OMf
AþBðX > YÞ # OMf

AþBðXÞ> OMf
AþBðXÞ. A

The proposition is proved.

4. The pessimistic MGRS in OIS

In this section, we consider another MGRS is in an ordered information system.

Definition 4.1. Let If ¼ ðU;AT;V ; f Þ be an ordered information system,

A1;A2; . . . ;As # AT be attribute subsets (s # 2jATj), and Rf
A1
;Rf

A2
; . . . ;Rf

As
be dominant

relations, respectively. The operators PMfPs

i¼1
Ai

and PMfPs

i¼1
Ai

: PðUÞ! PðUÞ are defined

as follows: for ;X [ PðUÞ,

PMfPs

i¼1
Ai
ðXÞ ¼ u

_m
i¼1

����� ½u�fAi
# X

� �( )
; PMfPs

i¼1
Ai
ðXÞ ¼ u

m̂

i¼1

����� ½u�fAi
> X – Y

� �( )
;

where ‘_’ means ‘or’ and ‘^’ means ‘and’. We call them the pessimistic multiple

granulation lower and upper approximation operators, and call PMfPs

i¼1
Ai
ðXÞ and

PMfPs

i¼1
Ai
ðXÞ the pessimistic multiple granulation lower approximation set and upper

approximation set of X, respectively.
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Moreover, if PMfPs

i¼1
Ai
ðXÞ – PMfPs

i¼1
Ai
ðXÞ, we say that X is the pessimistic rough set

with respect to multiple granulation spaces A1;A2; . . . ;As. Otherwise, we say that X is the

pessimistic definable set with respect to these multiple granulation spaces in ordered

information systems.

Similarly, the area of uncertainty or boundary region of this rough set is defined as

BnPPs

i¼1
Ai
ðXÞ ¼ PMfPs

i¼1
Ai
ðXÞ2 PMfPs

i¼1
Ai
ðXÞ:

To describe conveniently in our context, we express the pessimistic MGRS by using

the pessimistic multiple granulation rough set (PMGRS) in the ordered information

system. Moreover, one can obtain the following properties of the PMGRS approximations

in the ordered information systems.

Example 4.1. (Continued from Example 3.1) In Example 3.1, we have raised some

questions, here we have also proposed other questions, such as

Question 3: Which student must be excellent whatever condition we consider?

Question 4: If we consider one of these conditions at least, who may be excellent?

According to the definition of PMGRS, we can have

PMf
1þ2ðXÞ ¼ Y; PMf

1þ2ðXÞ ¼ {x1; x2; x3; x4; x5; x6; x8; x9; x10}:

We can find out that no one must be excellent if we consider all of these conditions, but

every one may be an excellent student expect x7 when we consider one of these conditions

at least.

Furthermore, one can check the following properties:

Rf
1 ðXÞ> Rf

2 ðXÞ ¼ PMf
1þ2ðXÞ; Rf

1 ðXÞ< Rf
2 ðXÞ ¼ PMf

1þ2ðXÞ:

Proposition 4.1. Let If ¼ ðU;AT;V ; f Þ be an ordered information system, Ai # AT,

i ¼ 1; 2; . . . ; s, and X # U. Then the following properties hold:

ðPL1Þ PMfPs

i¼1
Ai
ðXÞ # X ðContractionÞ;

ðPU1Þ PMfPs

i¼1
Ai
ðXÞ $ X ðExtensionÞ;

ðPL2Þ PMfPs

i¼1
Ai
ð, XÞ ¼, PMfPs

i¼1
Ai
ðXÞ ðDualityÞ;

ðPU2Þ PMfPs

i¼1
Ai
ð, XÞ ¼, PMfPs

i¼1
Ai
ðXÞ ðDualityÞ;

ðPL3Þ PMfPs

i¼1
Ai
ðYÞ ¼ Y ðNormalityÞ;

ðPU3Þ PMfPs

i¼1
Ai
ðYÞ ¼ YY ðNormalityÞ;

ðPL4Þ PMfPs

i¼1
Ai
ðUÞ ¼ U Y ðCo-normalityÞ;

ðPU4Þ PMfPs

i¼1
Ai
ðUÞ ¼ U ðCo-normalityÞ:
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Proof. Since the number of the granulations is finite, we only prove the results are true

when the ordered information system has two dominance relations (A;B # AT) for

convenience. It is obvious that all terms hold when A ¼ B. When A – B, the proposition

can be proved as follows:

(PL1) For any u [ PMf
AþBðXÞ, it can be known that ½u�fA # X and ½u�fB # X by

Definition 4.1. However, u [ ½u�fA and u [ ½u�fB . So we can have that u [ X. Hence,

PMf
AþBðXÞ # X.

(PU1) For any u [ X, we have u [ ½u�fA and u [ ½u�fB . So ½u�fA > X – Y and

½u�fB > X – Y, which imply that u [ PMf
AþBðXÞ. Hence, X # PMf

AþBðXÞ.

(PL2) For any u [ PMf
AþBð, XÞ, then

u [ PMf
AþBð, XÞ , ½u�fA #, X and ½u�fB #, X

, ½u�fA > X ¼ Y and ½u�fB > X ¼ Y , u � PMf
AþBðXÞ , u [, PMf

AþBðXÞ:

Hence, PMf
AþBð, XÞ ¼, PMf

AþBðXÞ.

(PU2) By (PL2), we have PMf
AþBðXÞ ¼, PMf

AþBð, XÞ. So it can be obtained that

, PMf
AþBðXÞ ¼ PMf

AþBð, XÞ.

(PL3) From (PL1), we have PMf
AþBðYÞ # Y. Also, it is well known that Y # PMf

AþBðYÞ.
So, PMf

AþBðYÞ ¼ Y.

(PU3) If PMf
AþBðYÞ – Y, then there must exist u [ PMf

AþBðYÞ. So we can find that

½u�fA > Y – Y or ½u�fB > Y – Y. Obviously, this is a contradiction. Thus, PMf
AþBðYÞ ¼ Y.

ðPL4Þ PMf
AþBðUÞ ¼ PMf

AþBð, YÞ ¼, PMf
AþBðYÞ ¼, Y ¼ U:

ðPU4sÞ PMf
AþBðUÞ ¼ PMf

AþBð, YÞ ¼, PMf
AþBðYÞ ¼, Y ¼ U:

A

Proposition 4.2. Let If ¼ ðU;AT;V ; f Þ be an ordered information system, Ai # AT,

i ¼ 1; 2; . . . ; s, and X; Y # U. Then the following properties hold:

ðPL5Þ PMfPs

i¼1
Ai
ðX > YÞ # PMfPs

i¼1
Ai
ðXÞ> PMfPs

i¼1
Ai
ðYÞ ðL-multiplicationÞ;

ðPU5Þ PMfPs

i¼1
Ai
ðX < YÞ $ PMfPs

i¼1
Ai
ðXÞ< PMfPs

i¼1
Ai
ðYÞ ðL-additionÞ;

ðPL6Þ X # Y ) PMfPs

i¼1
Ai
ðXÞ # PMfPs

i¼1
Ai
ðYÞ ðGranularityÞ;

ðPU6Þ X # Y ) PMfPs

i¼1
Ai
ðXÞ # PMfPs

i¼1
Ai
ðYÞ ðGranularityÞ;

ðPL7Þ PMfPs

i¼1
Ai
ðX < YÞ $ PMfPs

i¼1
Ai
ðXÞ< PMfPs

i¼1
Ai
ðYÞ ðU-additionÞ;

ðPU7Þ PMfPs

i¼1
Ai
ðX > YÞ # PMfPs

i¼1
Ai
ðXÞ> PMfPs

i¼1
Ai
ðYÞ ðU-multiplicationÞ:

Proof. Since the number of the granulations is finite, we prove the results are true only

when the ordered information system has two dominance relations (A;B # AT) for

convenience. It is obvious that all terms hold when A ¼ B or X ¼ Y. When A – B and

X – Y , the proposition can be proved as follows:
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(PL5) For any u [ PMf
AþBðX > YÞ, by Definition 4.1 we have

u [ PMf
AþBðX > YÞ , ½u�fA # ðX > YÞ and ½u�fB # ðX > YÞ

, ½u�fA # X; ½u�fA # Y; ½u�fB # X and ½u�fB # Y

, ½u�fA # X; ½u�fB # X; ½u�fA # Y and ½u�fB # Y

, u [ PMf
AþBðXÞ and u [ PMf

AþBðYÞ , u [ PMf
AþBðXÞ> PMf

AþBðYÞ:

Hence, PMf
AþBðX > YÞ ¼ PMf

AþBðXÞ> PMf
AþBðYÞ.

(PU5) For any u [ PMf
AþBðX < YÞ, by Definition 4.1 we have

u [ PMf
AþBðX < YÞ , ½u�fA > ðX < YÞ – Y or ½u�fB > ðX < YÞ – Y

, ½u�fA > X – Y or ½u�fA > Y – Y; or ½u�fB > X – Y or ½u�fB > Y – Y

, ½u�fA > X – Y or ½u�fB > X – Y; or ½u�fA > Y – Y or ½u�fB > Y – Y

, u [ PMf
AþBðXÞ or u [ PMf

AþBðYÞ , u [ PMf
AþBðXÞ< PMf

AþBðYÞ:

Hence, PMf
AþBðX < YÞ ¼ PMf

AþBðXÞ< PMf
AþBðYÞ.

(PL6) Since X # Y , one can have X > Y ¼ X. Then, PMf
AþBðX > YÞ ¼ PMf

AþBðXÞ.

Also, it can be found that PMf
AþBðX > YÞ ¼ PMf

AþBðXÞ> PMf
AþBðYÞ by (PL5). So, we can

obtain that PMf
AþBðXÞ ¼ PMf

AþBðXÞ> PMf
AþBðYÞ, that is to say that

PMf
AþBðXÞ # PMf

AþBðYÞ.

(PU6) Since X # Y , one can have X < Y ¼ Y . Then, PMf
AþBðX < YÞ ¼ PMf

AþBðYÞ.

Also, it can be found that PMf
AþBðX < YÞ ¼ PMf

AþBðXÞ< PMf
AþBðYÞ by (PU5). So, we can

obtain that PMf
AþBðYÞ ¼ PMf

AþBðXÞ< PMf
AþBðYÞ, that is to say that

PMf
AþBðXÞ # PMf

AþBðYÞ.

(PU7) Since X # X < Y and Y # X < Y , by (PL6) we can obtain that

PMf
AþBðXÞ # PMf

AþBðX < YÞ; PMf
AþBðYÞ # PMf

AþBðX < YÞ:

So, we have PMf
AþBðXÞ< PMf

AþBðYÞ # PMf
AþBðX < YÞ.

(PU7) Since X > Y # X and X > Y # Y , by (PU6), it can be obtained that

PMf
AþBðX > YÞ # PMf

AþBðXÞ; PMf
AþBðY > YÞ # PMf

AþBðYÞ:

So, we have PMf
AþBðX > YÞ # PMf

AþBðXÞ> PMf
AþBðXÞ.

The proposition is proved. A
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5. Differences and relationships among Greco’s rough set, the OMGRS, the

PMGRS in OIS

From the above sections, we have known the concepts and properties of the OMGRS and

the PMGRS. We will investigate the differences and relationships among Greco’s rough

set, the OMGRS, the PMGRS in an ordered information system in this section.

Proposition 5.1. Let If ¼ ðU;AT;V ; f Þ be an ordered information system, Ai # AT,

i ¼ 1; 2; . . . ; s, and X # U. Then, the following properties hold:

(1) OMfPs

i
Ai
ðXÞ # Rf

<s
i
Ai
ðXÞ.

(2) OMfPs

i
Ai
ðXÞ $ Rf

<s
i
Ai
ðXÞ.

Proof. Because the number of the granulations which was discussed in the ordered

information system is finite, we need to prove these properties only in the ordered

information system which has two dominance relations (A;B # AT) for convenience.

(1) For any u [ OMf
AþBðXÞ, it can be known that ½u�fA # X or ½u�fB # X by Definition

3.1. On the other hand, since A # A < B and B # A < B, we have ½u�fA<B # ½u�fA
and ½u�fA<B # ½u�fB by Proposition 2.2. So we can obtain that ½u�fA<B # X. That is

to say that u [ Rf
A<BðXÞ. Hence, OMf

AþBðXÞ # Rf
A<BðXÞ.

(2) For B;A # AT and X # U, we have Rf
A<BðXÞ ¼, Rf

A<Bð, XÞ. Then, it can be

obtained that OMf
AþBð, XÞ # Rf

A<Bð, XÞ by the conclusion of (1). So, one can

obtain that , OMf
AþBð, XÞ $, Rf

A<Bð, XÞ. Hence, OMf
AþBðXÞ $ Rf

A<BðXÞ.

The proof is complete. A

Proposition 5.2. Let If ¼ ðU;AT;V ; f Þ be an ordered information system, Ai # AT,

i ¼ 1; 2; . . . ; s, and X # U. Then, the following properties hold:

(1) PMfPs

i
Ai
ðXÞ # Rf

<s
i
Ai
ðXÞ.

(2) PMfPs

i
Ai
ðXÞ $ Rf

<s
i
Ai
ðXÞ.

Proof. Because the number of granulations which was discussed in the ordered

information system is finite, we need to prove these properties only in the ordered

information system which has two dominance relations (A;B # AT) for convenience.

(1) For any u [ PMf
AþBðXÞ, it can be known that ½u�fA # X and ½u�fB # X by

Definition 4.1. On the other hand, since A # A < B and B # A < B, we have

½u�fA<B # ½u�fA and ½u�fA<B # ½u�fB by Proposition 2.2. So we can obtain that

½u�fA<B # X. That is to say that u [ Rf
A<BðXÞ. Hence, PMf

AþBðXÞ # Rf
A<BðXÞ.

(2) For B;A # AT and X # U, we have Rf
A<BðXÞ ¼, Rf

A<Bð, XÞ. Then, it can be

obtained that PMf
AþBð, XÞ # Rf

A<Bð, XÞ by the conclusion of (1). So, one can

obtain that , PMf
AþBð, XÞ $, Rf

A<Bð, XÞ. Hence, PMf
AþBðXÞ $ Rf

A<BðXÞ.
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The proof is complete. A

Proposition 5.3. Let If ¼ ðU;AT;V ; f Þ be an ordered information system, Ai # AT,

i ¼ 1; 2; . . . ; s, and X # U. Then, the following properties hold:

(1) OMfPs

i
Ai
ðXÞ ¼ <s

i¼1Rf
Ai
ðXÞ.

(2) OMfPs

i
Ai
ðXÞ ¼ >s

i¼1Rf
Ai
ðXÞ.

Proof. Because the number of granulations which was discussed in the ordered

information system is finite, we need to prove these properties only in the ordered

information system which has two dominance relations (A;B # AT) for convenience.

(1) For any u [ OMf
AþBðXÞ, we have

u [ OMf
AþBðXÞ , ½u�fA # X or ½u�fB # X

, u [ Rf
A ðXÞ or u [ Rf

B ðXÞ

, u [ Rf
A ðXÞ< Rf

B ðXÞ:

Hence, OMf
AþBðXÞ ¼ Rf

A ðXÞ< Rf
B ðXÞ.

(2) For any u [ OMf
AþBðXÞ, we have

u [ OMf
AþBðXÞ , ½u�fA > X – Y and ½u�fB > X – Y

, u [ Rf
A ðXÞ and u [ Rf

B ðXÞ

, u [ Rf
A ðXÞ> Rf

B ðXÞ:

Hence, OMf
AþBðXÞ ¼ Rf

A ðXÞ> Rf
B ðXÞ.

The proof is complete. A

Proposition 5.4. Let If ¼ ðU;AT;V ; f Þ be an ordered information system, Ai # AT,

i ¼ 1; 2; . . . ; s, and X # U. Then, the following properties hold:

(1) PMfPs

i
Ai
ðXÞ ¼ >s

i¼1Rf
Ai
ðXÞ.

(2) PMfPs

i
Ai
ðXÞ ¼ <s

i¼1Rf
Ai
ðXÞ.

Proof. Because the number of granulations which was discussed in the ordered

information system is finite, we need to prove these properties only in the ordered

information system which has two dominance relations (A;B # AT) for convenience.

(1) For any u [ PMf
AþBðXÞ, we have

u [ PMf
AþBðXÞ , ½u�fA # X and ½u�fB # X

, u [ Rf
A ðXÞ and u [ Rf

B ðXÞ

, u [ Rf
A ðXÞ> Rf

B ðXÞ:

Hence, PMf
AþBðXÞ ¼ Rf

A ðXÞ> Rf
B ðXÞ.
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(2) For any u [ PMf
AþBðXÞ, we have

u [ PMf
AþBðXÞ , ½u�fA > X – Y or ½u�fB > X – Y

, u [ Rf
A ðXÞ or u [ Rf

B ðXÞ

, u [ Rf
A ðXÞ< Rf

B ðXÞ:

Hence, PMf
AþBðXÞ ¼ Rf

A ðXÞ< Rf
B ðXÞ.

The proof is complete. A

Proposition 5.5. Let If ¼ ðU;AT;V ; f Þ be an ordered information system, Ai # AT,

i ¼ 1; 2; . . . ; s, and X; Y # U. Then, the following properties hold:

(1) OMfPs

i
Ai
ðX > YÞ ¼ <s

i¼1 Rf
Ai
ðXÞ> Rf

Ai
ðYÞ

� �
.

(2) OMfPs

i
Ai
ðX < YÞ ¼ >s

i¼1 Rf
Ai
ðXÞ< Rf

Ai
ðYÞ

� �
.

Proof. It can be obtained easily by Proposition 5.3. A

Proposition 5.6. Let If ¼ ðU;AT;V ; f Þ be an ordered information system, Ai # AT ,

i ¼ 1; 2; · · ·; s, and X; Y # U. Then, the following properties hold:

(1) PMfPs

i
Ai
ðX > YÞ ¼ >s

i¼1 Rf
Ai
ðXÞ> Rf

Ai
ðYÞ

� �
.

(2) PMfPs

i
Ai
ðX < YÞ ¼ <s

i¼1 Rf
Ai
ðXÞ< Rf

Ai
ðYÞ

� �
.

Proof. It can be obtained directly by Proposition 5.4. A

Proposition 5.7. Let If ¼ ðU;AT;V ; f Þ be an ordered information system, Ai # AT,

i ¼ 1; 2; . . . ; s, and X # U. Then, the following properties hold:

(1) PMfPs

i¼1
Ai
ðXÞ # OMfPs

i¼1
Ai
ðXÞ # Rf

<s
i¼1

Ai
ðXÞ,

(2) PMfPs

i¼1
Ai
ðXÞ $ OMfPs

i¼1
Ai
ðXÞ $ Rf

<s
i¼1

Ai
ðXÞ.

Proof. It can be obtained easily by Definitions 3.1 and 4.1 and Propositions 5.1 and

5.2. A

Proposition 5.8. Let If ¼ ðU;AT;V ; f Þ be an ordered information system, Ai # AT,

i ¼ 1; 2; . . . ; s, and X # U. Then, the following properties hold:

(1) PMfPs

i¼1
Ai
ðXÞ # Rf

Ai
ðXÞ # OMfPs

i¼1
Ai
ðXÞ # Rf

<s
i¼1

Ai
ðXÞ.

(2) PMfPs

i¼1
Ai
ðXÞ $ Rf

Ai
ðXÞ $ OMfPs

i¼1
Ai
ðXÞ $ Rf

<s
i¼1

Ai
ðXÞ.

Proof. It can be obtained easily by Propositions 5.3 and 5.4. A
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Example 5.1. (Continued from Examples 3.1 and 4.1) In Examples 3.1 and 4.1, we have

obviously obtained that

R
_

1<2

¼ {x2; x5; x6}; �R1<2 ¼ {x1; x2; x3; x4; x5; x6; x8; x9; x10};

and

PMf
1þ2ðXÞ # OMf

1þ2ðXÞ # Rf
1<2ðXÞ # X # Rf

1<2ðXÞ # OMf
1þ2ðXÞ # PMf

1þ2ðXÞ:

6. Measures of the two types of MGRS models in OIS

In this section, we investigate several elementary measures in the MGRS and their

properties in ordered information systems.

At first, we discuss the elementary measures of OMGRS and their properties in ordered

information systems.

Uncertainty of a set (category) is due to the existence of a borderline region. The bigger

the borderline region of a set is, the lower the accuracy of the set is (and vice versa).

To more precisely express this idea, we introduce the accuracy measure to the OMGRS in

ordered information systems as follows.

Definition 6.1. Let If ¼ ðU;AT;V ; f Þ be an ordered information system, Ai # AT,

i ¼ 1; 2; . . . ; s, and X # U. The optimistic rough measure of X by
Ps

i¼1Ai is defined as

rOPs

i¼1
Ai
ðXÞ ¼ 1 2

OMfPs

i¼1
Ai
ðXÞ

����
����

OMfPs

i¼1
Ai
ðXÞ

����
����
;

where X – Y.

From the definition, one can derive the following properties.

Proposition 6.1. Let If ¼ ðU;AT;V ; f Þ be an ordered information system, Ai # AT,

i ¼ 1; 2; . . . ; s, and X # U. Then

rAi
ðXÞ $ rOPs

i¼1
Ai
ðXÞ $ r<s

i¼1
Ai
ðXÞ:

Proof. By Proposition 5.3, we have

Rf
Ai
ðXÞ # OMfPs

i¼1
Ai
ðXÞ; Rf

Ai
ðXÞ $ OMfPs

i¼1
Ai
ðXÞ:

And by Proposition 5.7, we have

OMfPs

i¼1
Ai
ðXÞ # Rf

<s
i¼1

Ai
ðXÞ; OMfPs

i¼1
Ai
ðXÞ $ Rf

<s
i¼1

Ai
ðXÞ:
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So, the following holds:

Rf
Ai
ðXÞ

��� ���
Rf

Ai
ðXÞ

��� ��� #
OMfPs

i¼1
Ai
ðXÞ

����
����

OMfPs

i¼1
Ai
ðXÞ

����
����
#

Rf
<s

i¼1
Ai
ðXÞ

����
����

Rf
<s

i¼1
Ai
ðXÞ

��� ��� :

Hence, by Definition 6.1, we have

rAi
ðXÞ $ rOPs

i¼1
Ai
ðXÞ $ r<s

i¼1
Ai
ðXÞ:

The proof is complete. A

Example 6.1. (Continued from Example 3.1) Computing the optimistic rough measures of

X ¼ {x1; x2; x3; x5; x6; x8; x10} by using the results in Example 3.1, it follows that

r1ðXÞ ¼ 1 2
Rf

1 ðXÞ
��� ���
Rf

1 ðXÞ
��� ��� ¼

8

9
; r2ðXÞ ¼ 1 2

Rf
2 ðXÞ

��� ���
Rf

2 ðXÞ
��� ��� ¼

3

4
;

r1<2ðXÞ ¼ 1 2
Rf

1<2ðXÞ
��� ���
Rf

1<2ðXÞ
��� ��� ¼

5

8
; rO

1þ2ðXÞ ¼ 1 2
OMf

1þ2ðXÞ
��� ���
OMf

1þ2ðXÞ
��� ��� ¼

5

8
:

Clearly, it follows from the earlier computation that

r1ðXÞ $ rO
1þ2ðXÞ $ r1<2ðXÞ;

and

r2ðXÞ $ rO
1þ2ðXÞ $ r1<2ðXÞ:

Note that the rough measure of a target concept defined by using multiple granulations

is always much better than that defined by using a single granulation, which is suitable for

more precisely characterizing a target concept and problem solving according to user

requirements in ordered information systems.

Definition 6.2. Let If ¼ ðU;C < {d};V ; f Þ be an ordered decision table, Ai # C,

i ¼ 1; 2; . . . ; s, and {D1;D2; . . . ;Dk} be all decision classes induced by the decision

attribute d. Approximation quality of d by
Ps

i¼1Ai, called the optimistic degree of

dependence, is defined as

gO

Xs

i¼1

Ai; d

 !
¼

1

jUj

Xk

j¼1

OMfPs

i¼1
Ai
ðDjÞ

����
����

� �
:

This measure can be used to evaluate the deterministic part of the rough set description

of U=d by counting those objects which can be reclassified as blocks of U=d with the

knowledge given by
Ps

i¼1Ai. Moreover, we have the following properties with respect to

the above definition.
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Proposition 6.2. Let If ¼ ðU;C < {d};V; f Þ be an ordered decision table, Ai # C,

i ¼ 1; 2; . . . ; s, and {D1;D2; . . . ;Dk} be all decision classes induced by the decision

attribute d. Then

gðAi; dÞ # gO

Xs

i¼1

Ai; d

 !
# g

[s

i¼1

Ai; d

 !
:

Proof. For every Dj, j ¼ 1; 2; . . . ; k, by Propositions 5.3 and 5.7, we have

Rf
Ai
ðDjÞ # OMfPs

i¼1
Ai
ðDjÞ # Rf

<s
i¼1

Ai
ðDjÞ:

So,

Rf
Ai
ðDjÞ

��� ��� # OMfPs

i¼1
Ai
ðDjÞ

����
���� # Rf

<s
i¼1

Ai
ðDjÞ

����
����:

Hence, by Definition 6.2, we have

gðAi; dÞ # gO

Xs

i¼1

Ai; d

 !
# g <

s

i¼1
Ai; d

� �
:

The proof is completed. A

Example 6.2. (Continued from Example 3.1) Computing the degree of dependence by

using the single granulation and multiple granulations.

From Table 1, we can have U=D ¼ {DY ;DN} and

DY ¼ {x1; x2; x3; x5; x6; x8; x10}; DN ¼ {x4; x7; x9}:

Moreover, the following can be computed by Table 1 and the results of Example 3.1:

Rf
1 ðDY Þ ¼ {x5}; Rf

2 ðDY Þ ¼ {x2; x6}; Rf
1<2ðDY Þ ¼ {x2; x5; x6};

OMf
1þ2ðDY Þ ¼ {x2; x5; x6}; Rf

1 ðDNÞ ¼ {x7}; Rf
2 ðDNÞ ¼ {x4; x7};

Rf
1<2ðDNÞ ¼ {x4; x7}; OMf

1þ2ðDNÞ ¼ {x4; x7}:
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So, we have

gð1;DÞ ¼
1

jUj
Rf

1 ðDY Þ

��� ���þ Rf
1 ðDNÞ

��� ���� �
¼

1

5
;

gð2;DÞ ¼
1

jUj
Rf

2 ðDY Þ

��� ���þ Rf
2 ðDNÞ

��� ���� �
¼

2

5
;

gð1 < 2;DÞ ¼
1

jUj
Rf

1<2ðDY Þ

��� ���þ Rf
1<2ðDNÞ

��� ���� �
¼

1

2
;

gOð1 þ 2;DÞ ¼
1

jUj
OMf

1þ2ðDY Þ

��� ���þ OMf
1þ2ðDNÞ

��� ���� �
¼

1

2
:

Hence, it can be found that

gð1;DÞ # gOð1 þ 2;DÞ # gð1 < 2;DÞ;

and

gð2;DÞ # gOð1 þ 2;DÞ # gð1 < 2;DÞ:

Next, we will investigate several elementary measures in the PMGRS and their properties

in ordered information systems.

Similarly, we introduce the accuracy measure to the PMGRS in ordered information

systems as follows.

Definition 6.3. Let If ¼ ðU;AT;V ; f Þ be an ordered information system, Ai # AT,

i ¼ 1; 2; . . . ; s, and X # U. The pessimistic rough measure of X by
Ps

i¼1Ai is defined as

rPPs

i¼1
Ai
ðXÞ ¼ 1 2

PMfPs

i¼1
Ai
ðXÞ

����
����

PMfPs

i¼1
Ai
ðXÞ

����
����
;

where X – Y.

From the definitions, one can derive the following properties.

Proposition 6.3. Let If ¼ ðU;AT;V ; f Þ be an ordered information system, Ai # AT,

i ¼ 1; 2; . . . ; s, and X # U. Then

rPPs

i¼1
Ai
ðXÞ $ rAi

ðXÞ $ r<s
i¼1

Ai
ðXÞ:

Proof. By Proposition 5.4, we have

PMfPs

i¼1
Ai
ðXÞ # Rf

Ai
ðXÞ; PMfPs

i¼1
Ai
ðXÞ $ Rf

Ai
ðXÞ:
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And, we have known

Rf
Ai
ðXÞ # Rf

<s
i¼1

Ai
ðXÞ; Rf

Ai
ðXÞ $ Rf

<s
i¼1

Ai
ðXÞ:

So, the following holds:

PMfPs

i¼1
Ai
ðXÞ

����
����

PMfPs

i¼1
Ai
ðXÞ

����
����
#

Rf
Ai
ðXÞ

��� ���
Rf

Ai
ðXÞ

��� ��� #
Rf
<s

i¼1
Ai
ðXÞ

����
����

Rf
<s

i¼1
Ai
ðXÞ

��� ��� :

Hence, by Definition 6.3, we have

rPPs

i¼1
Ai
ðXÞ $ rAi

ðXÞ $ r<s
i¼1

Ai
ðXÞ:

The proof is complete. A

Example 6.3. (Continued from Examples 3.1 and 4.1) Computing the pessimistic rough

measures of X ¼ {x1; x2; x3; x5; x6; x8; x10} in the system given in Example 3.1. By

Example 4.1, it follows that

rP
1þ2ðXÞ ¼ 1 2

PMf
1þ2ðXÞ

��� ���
PMf

1þ2ðXÞ
��� ��� ¼ 1:

Clearly, it follows from the earlier computation that

rP
1þ2ðXÞ $ r1ðXÞ $ r1<2ðXÞ

and

rP
1þ2ðXÞ $ r2ðXÞ $ r1<2ðXÞ:

Similarly to the OMGRS, in the following, we will discuss the pessimistic degree of

dependence.

Definition 6.4. Let If ¼ ðU;C < {d};V ; f Þ be an ordered decision table, Ai # C,

i ¼ 1; 2; . . . ; s, and {D1;D2; . . . ;Dk} be all decision classes induced by decision attribute

d. Approximation quality of d by
Ps

i¼1Ai, called the pessimistic degree of dependence, is

defined as

gP

Xs

i¼1

Ai; d

 !
¼

1

jUj

Xk

j¼1

PMfPs

i¼1
Ai
ðDjÞ

����
����

� �
:

Moreover, we have the following properties with respect to the above definition.

Proposition 6.4. Let If ¼ ðU;C < {d};V; f Þ be an ordered decision table, Ai # C,

i ¼ 1; 2; . . . ; s, and {D1;D2; . . . ;Dk} be all decision classes induced by decision attribute
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d. Then

gP

Xs

i¼1

Ai; d

 !
# gðAi; dÞ # g <

s

i¼1
Ai; d

� �
:

Proof. For every Dj, j ¼ 1; 2; . . . ; k, by Propositions 5.3 and 5.7, we have

PMfPs

i¼1
Ai
ðDjÞ # Rf

Ai
ðDjÞ # Rf

<s
i¼1

Ai
ðDjÞ:

So,

PMfPs

i¼1
Ai
ðDjÞ

����
���� # Rf

Ai
ðDjÞ

��� ��� # Rf
<s

i¼1
Ai
ðDjÞ

����
����:

Hence, by Definition 6.4, we have

gP

Xs

i¼1

Ai; d

 !
# gðAi; dÞ # g <

s

i¼1
Ai; d

� �
:

The proof is complete. A

Example 6.4. (Continued from Examples 3.2 and 4.1) Computing the pessimistic degree of

dependence in the ordered system given in Table 1.

In Example 3.2, we have known that U=D ¼ {DY ;DN} and

gð1;DÞ ¼
1

5
; gð2;DÞ ¼

2

5
; gð1 < 2;DÞ ¼

1

2
:

Moreover, the following can be computed by Table 1 and the results of Example 4.1:

PMf
1þ2ðDY Þ ¼ Y; PMf

1þ2ðDNÞ ¼ {x7}:

So, we have

gPð1 þ 2;DÞ ¼
1

jUj
PMf

1þ2ðDY Þ

��� ���þ PMf
1þ2ðDNÞ

��� ���� �
¼

1

10
:

Hence, it can be found that

gPð1 þ 2;DÞ # gð1;DÞ # gð1 < 2;DÞ

and

gPð1 þ 2;DÞ # gð2;DÞ # gð1 < 2;DÞ:
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Proposition 6.5. Let If ¼ ðU;AT;V ; f Þ be an ordered information system, Ai # AT,

i ¼ 1; 2; . . . ; s, and X # U. Then

rPPs

i¼1
Ai
ðXÞ $ rAi

ðXÞ $ rOPs

i¼1
Ai
ðXÞ $ rPs

i¼1
Ai
ðXÞ:

Proof. It can be obtained directly by Definitions 6.1 and 6.3 and Proposition 5.8. A

Proposition 6.6. Let If ¼ ðU;AT;V ; f Þ be an ordered information system, Ai # AT,

i ¼ 1; 2; . . . ; s, and X # U. Then

gP

Xs

i¼1
Ai; d

� �
# gðAi; dÞ # gO

Xs

i¼1
Ai; d

� �
# g <

s

i¼1
Ai; d

� �
:

Proof. It can be obtained directly by Definitions 6.2 and 6.4 and Proposition 5.8. A

7. Conclusion

The original dominance-based rough set model cannot be used to deal with ordered

information systems with complicated context. Nevertheless, by relaxing the indiscern-

ibility relation to more general binary relations, many improved rough set models have

been successfully applied in the information systems with complicated context for

knowledge acquisition. The contribution of this paper is to extend Greco’s single

granulation dominance-based rough set model to two new types of MGRS models in an

ordered information system. In this paper, two new types of MGRS models have been

constructed, respectively, based on multiple dominant relations for an ordered information

system. In the two new types of MGRS models, a target concept was approximated from

two different kinds of views by using the dominant classes induced from multiple

granulations. In particular, some important properties of the two types of MGRS models

were investigated and the relationships and differences among Greco’s rough set and two

new types of MGRS models in an ordered information system were shown. Moreover,

several important measures have been developed in to two types of MGRS models, such as

rough measure and quality of approximation. From the contribution, it can be found that

when two attribute sets in ordered information systems possess a contradiction or

inconsistent relationship, or where efficient computation is required, the two new types of

MGRS models will display its advantage for rule extraction and knowledge discovery in

an ordered information system.

In our further research, we will extend other rough set methods in the context of

multiple granulations such as viable precision rough set model, rough set induced by

covering, and so on.
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